Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1624942

ABSTRACT

Tuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb), resulted in almost 1.4 million deaths in 2019, and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M.tb comes into close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic, innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M.tb upon contact, defining subsequent M.tb-host cell interactions and infection outcomes in vitro and in vivo. We also demonstrated that ALF from 60+ year old elders (E-ALF) vs. healthy 18- to 45-year-old adults (A-ALF) is dysfunctional, with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay shows that M.tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M.tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M.tb exposure to E-ALF shows a lesser transcriptional response, with most of the M.tb genes unchanged or downregulated. Overall, this study indicates that M.tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status, determined by factors such as age, might play an important role in determining infection outcome.


Subject(s)
Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Adolescent , Adult , Age Factors , Aged , Bronchoalveolar Lavage Fluid , Cellular Structures , Female , Gene Expression Regulation, Bacterial , Humans , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Male , Mannosides/biosynthesis , Mannosides/genetics , Mannosyltransferases/biosynthesis , Mannosyltransferases/genetics , Middle Aged , Young Adult
2.
Emerg Infect Dis ; 27(4): 1023-1031, 2021 04.
Article in English | MEDLINE | ID: covidwho-1088897

ABSTRACT

Efforts to combat the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have placed a renewed focus on the use of transmission electron microscopy for identifying coronavirus in tissues. In attempts to attribute pathology of COVID-19 patients directly to tissue damage caused by SARS-CoV-2, investigators have inaccurately reported subcellular structures, including coated vesicles, multivesicular bodies, and vesiculating rough endoplasmic reticulum, as coronavirus particles. We describe morphologic features of coronavirus that distinguish it from subcellular structures, including particle size range (60-140 nm), intracellular particle location within membrane-bound vacuoles, and a nucleocapsid appearing in cross section as dense dots (6-12 nm) within the particles. In addition, although the characteristic spikes of coronaviruses may be visible on the virus surface, especially on extracellular particles, they are less evident in thin sections than in negative stain preparations.


Subject(s)
COVID-19 , Cellular Structures , SARS-CoV-2 , Biopsy/methods , COVID-19/pathology , COVID-19/virology , Cellular Structures/classification , Cellular Structures/ultrastructure , Humans , Microscopy, Electron/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL